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Abstract. Simplified forms of the space-time discontinuous Galerkin (DG) and

discontinuous Galerkin least-squares (DGLS) finite element method are developed

and analyzed. The new formulations exploit simplifying properties of entropy en-

dowed conservation law systems while retaining the favorable energy properties

associated with symmetric variable formulations.

Introduction

The high-order accurate numerical solution of systems of nonlinear conserva-

tion laws remains a computationally expensive endeavor. This article consid-

ers simplified forms of the Discontinuous Galerkin (DG) and Discontinuous

Galerkin least-squares (DGLS) finite element methods tailored to systems of

first-order nonlinear conservation laws with convex entropy extension. Cen-

tral to the development is the Eigenvalue Scaling Theorem which character-

izes right symmetrizers of entropy endowed systems of conservation laws in

terms of scaled eigenvectors of the corresponding flux Jacobian matrices. This

yields a simplification of the DG and DGLS methods without sacrificing the

pleasing energy properties of symmetric variable formulations. The next sec-

tion briefly reviews a number of results in symmetrization theory discussed

in detail in Barth [2.1].

1 Brief Review of Symmetrization and the Eigenvector

Scaling Theorem

Consider a system of m coupled first-order differential equations in d space co-

ordinates and time which represents a conservation law process. Let u(x, t) :

IR a x IR+ _-_ IRm denote the dependent solution variables and f(u) : IRm _-r

IRm×d the flux vector. The prototype conservation system is then given by

u,t + J'i_. = 0 (1.1)

with implied summation on the index i. Additionally. the svstem is assumed

to possess an scalar entropy extension. Let U(u) : IRm ___ IR denote an
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entropy function and F(u) : IR m _-+ ]R_ the entropy flux such that in addition

to (1.1) the following inequality holds

Ut +F _ <0 (1.2)

with equality fur smooth solutions. In symmetrization theory for first-order

conservation laws, one seeks a mapping u(v) : IRm _-* IR" applied to (1.1)
so that when transformed

t

U.vV.t + f ,vV x, = 0 (1.3)

the matrix u, is symmetric positive definite (SPD) and the matrices fi,, are

symmetric. Clearly, if functions U(v), 5ri(v) : IR m _-_ IR can be found so that

_,r = u., (/,)r = _, (1.4)

then the matrices

u_ = u.. Yl. = _.,. (1.2)

are symmetric. Since v is not yet known, little progress has been made.
Introducing the following duality relationships

U(u) = vr(u) u - U(v(u)) (1.6)

Fi(u) = vT(u) fi(U) - .T'i(v(u))

followed by differentiation yields

U,u : _T + IiT_ u _ U,v,V, u = ,oT

(1.7)

(1.8)

F i T iV f.u + (/i)Tv.u -_..l,V u T i= - = v f,u (1.9),u , ,

Equation (1.8) gives an explicit expression for the entropy variables v in

terms of derivatives of the entropy function U(u)

v T = U,_ . (1.10)

Finally, we require convexity of U(u) which insures positive definiteness of

v_, and u,, and implies hyperbolicity of (1.1) [5,9], viz., that the linear

combination f.u(n) = ni fi_, has real eigenvalues and a complete set of real-

valued eigenvectors for all nonzero n E IRa. This result follows immediately
from the identity

(u.,.,)-l/2f,u(n)(uv)_/2 = (U,v)-l/2f,u(n)(Uv)-t/2

symm

which shows that /u(n) is similar to a symmetric matrix.
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1.1 The Eigenvector Scaling Theorem

Next. we consider an important algebraic property of right symmetrizable

systems which is used later in the implementation of the DG and DGLS
schemes. Simplifying upon the previous notation, let .4o = u .... 4_ = .f_.v,

.4, = Ai.-lo and rewrite (1.3)

•-10v.t + .-t,v _, = 0 • (1.11)

The following theorem states a t)roperty of the symmetric matrix --[i sym-

metrized via the symmetric positive definite matrix -40-

Theorem 1.1 (Eigenvector Scaling). Let A E IF['l×n be an arbitrary di-

agonalizable matrix and S the set o] all right symmetrizers:

S = {B E IR ''×'1 [ B SPD, AB symmetric}.

Further. let R E ]R_ "_ denote the right eigenvector matrix which diagonalizes
.4

.4 = R.IR -t

with r dist:nct eigenvalues, .1 = Diag(Ai I,n_ ×m_ , A2Im__×,_ ..... A, I,,. × m. ).
Then for each B E S there exists a symmetric block diagonal matrix T =

Diag(T, n2 ( _:, Tm__.,,_. ..... Tm. ×,n.) that block scales columns o] R, R =
R T..such that

B = RRr, .4 = n.lf¢ -_

which imply that

AB = R.ffF.

Proof. Omitted. see [2]. [3

Note that this last formula states a congruence relationship since R is not

generally orthonormal and ,1 does not represent the eigenvalues of AB. The

Eigenvalue Scaling Theorem is a variant of the well known theory developed

for the commuting matrix equation AX - XA = 0, A,X E IR _×n, see for

example Gantmacher [6]. Examples of the Eigenvector Scaling Theorem for

the Euler and magnetohydrodynamie equations are given in [2].

1.2 Generalized Matrix Functions with Respect to the
Riemannian Matrix Ao

For use in later developments, it is useful to define the following generic

matrix function f(.-l) with respect to the Riemannian matrix .-i0

/.a0(A) - Ao/(.-i_'.-i) . (1.12)

This definition reflects the following steps: (1) multiplication of the system
(1.11} by .-IL_l in order to restore a Euclidean metric, (2) invocation of the
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matrixfunctiononrhematrixproduct.-ioI,-li,(3)multiplicationoftheresult
by --ioto restoretheoriginalmetricmatrix.Proposition1.2showsthat this
generalizedmatrixf_:nctionissymmetricandhasarathersimpleconstruction
for symmetrizables'.-._temsbyexploitingtheEigenvalueScalingTheorem.

Proposition 1.2. Y_r'th [2,I]. Let .21o denote the SPD right symmetrizer of
A such that .2_= .4.4 ,..21o = [_RT. and .4 = /).1/) -t . The generalized matrix

function f A.,(.21) is ,yrnmetric and defined canonically in terms of entropy
,scaled eigencectors ,zs

f io(,-l) -- Rf(.l)/) r . (1.13)

In later sections, the generalized matrix absolute value function I.-il.i0 will be
required

I.-il._,, = RI.11R r . (1.14)

This matrix absolute value function has a natural generalization to IRa using

an Lo-like norm definition

which has a particularly simple form when p = I which is used later in the

least-squares term appearing in the DGLS method

d

I--il_._o = _ R, I.l,I Rr . (1.16)
i=t

2 Simplified DG, DGLS, and GLS Finite Element

Methods

Let /? denote a spatial domain composed of nonoverlapping elements Ti,

.Q = UTi, 1", nTj = 0, i 7_ j and I '_ =]t'_,tn+l[ the n-th time interval.

It is useful to also define the element set T = {T1,T2,...,TITI} and edge
set.g = {el. e2 ..... e!EI }- To simplify the exposition, consider a single vari-

ational formulation with weakly enforced boundary conditions. By choosing
the correct space of functions (discontinuous or continuous) and omitting the

least-squares variational term, one can switch from the DGLS formulation to

the DG or GLS formulations. In the GLS formulation [7,10], functions are

continuous in space and discontinuous in time

where v denotes the entropy-variables for the system. In the DG and DGLS

formulations [8,3], functions are discontinuous in space and time, i.e.
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Consider the prototype hyperbolic system for the space-time domain 1"2x [0. T]

with boundary data g imposed on F via admissibility condition

u.t + f'._, =0 in .Q

.4-(n) (g-u) =0 on F (2.1)

or in symmetric quasi-linear form for smooth solutions

.-t-(n) (g-v) =0 one (2.2)

with A(n) = n, .4i and .-i(n) = ni .-li. The combined GLS and DG schemes

are defined by the following stabilized variational formulation:

Find v h E 1,"h such that for all w h E V h

B(v h . U"5)(;AL + B(Vh,wh)L S + B(vh,wh)s (' = 0 (2.3)

B(V.W)(;AL = /,fIT(--U(V) . W t -- fi(V) .w,,,)dxdt

Q 1/3 t n+l+ ( (_ )'U(v(t__+l))-w(t_-)'U(V(t2)))dx

+ f ___cf (w(x-)-w(x+))h(v(x-),v(_+):n)dxdt

where h denotes a numerical flux function and r a small m x m SPD matrix

for the least-squares term. For theoretical and practical reasons, two numer-
ical flux functions are considered. Both are of the form

h(v_,v+;n) = _(f(v_;n)+f(v+;n))- hd(v-,v+;n) (2.4)

and consistent with the true flux in the sense that h(v, v; n) = f(v; n).

1. Symmetric Mean-Value Flux. This flux is motivated from the non-

linear energy theory of Sect. 2.2. Define the parameterization W(0) -

v(x_) + 0 [v]::. The symmetric mean-value flux is then given by

with

h_._v(V-,.+; n) = I.-i(.-,-+; '_)lsMv ["]:+_

fo
15t(v_,v+?n)lsxlv =_ I._(_(O);n)l.iodO . (2.5)

By construction, the matrix 1.51(v_,v+;n)lsMv is symmetric positive

semi-definite. I-'sing this form of flux dissipation (2.5), nonlinear entropy
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normstabilityof theDG,DGLS,andGLSformulationscanbeshownas
discussedin Sect.2.2.In addition,let

/0'.4(n)sxlv = .4(_(0); n) dO (2.6)

denote the integral mean-value matrix for which the following useful prop-
erty exists

[/(n)]: +_ = -'t(n)SMV Iv] :+_ (2.7)

which is a necessary ingredient for optimal discontinuity resolution. To

prove stability of other (more practical) forms of flux dissipation, one

formally needs only show that the new form is more energy dissipative

than the symmorric mean-value form in the following sense:

[v]:: . hA x+ hdsMv < [_]__ "

2. Discrete Symmetric Mean-Value Flux. The discrete symmetric mean-

value flux function replaces the state-space path integration in (2.5) by

N point numerical quadrature

d

hDs.,lv(V-, v+; n) = I.-i(v-, v+; n)IDsMv [v];_+

with

N

l.i(v_, v_: n)lDsxtv [v];+_- _ _a I,-i(_(o,);n)l_o Iv];_+ (2.8)
q=l

where wq and 0_ denotes the quadrature weights and positions. In form-

ing this flux, recall from the Eigenvalue Scaling Theorem that I,-112o =

/) 1.1] k r. This flux function is of practical interest since it is easily formed

and has a relatively straightforward Jacobian linearization as will be

shown later. The absolute value in this equation renders the state-space

path integration from v_ to v+ slope discontinuous whenever entries in ,.1

change sign. In this case, to retain accuracy of the numerical quadrature

at n _< m possible points of slope discontinuity, the path integration is

further subdivided into subintervals, e.g. [v_, v+] = [v_, v_] U [v_, v_] U
... W [vn,v+] where v_ = v(0i) is a location 0i such that an entry of

.1 vanishes. In practice, satisfactory results [1] have been obtained using

2-point Gaussian quadrature rules (which integrate cubic polynomials

exactly).

2.1 Linear Energy Analysis

Due to length constraints of this article, we simply restate some relevant

theorems given in Barth [2,1] concerning energy boundedness of variational
form (2.3) for systems of hyperbolic equations.
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Theorem 2.1. Global Energy Stability (Linear Hyperbolic System).

The variational formulation (2.3) for linear hyperbolic systems is energy sta-

ble {modulo data (t) with the following global energy balance."

.\- 1 II[v _ i],_.r2- 2:lAov., + .-i_vx I1_-.._. + <Iv]_
eEE

.V - 1 N -- l

," N 2 0 )
+ __,(v?-._;.r×to -'[v(t-)l]4o._ = Iv(t-) )o,_ + __, 2(v.o)(_A-).r_t. •

rt=0 rt=O

Proof. Omitted, see !2.1]. []

This energy balance equation formally bounds the energy at time t_' in terms

of initial data and inflow boundary data. Next, we consider the filll nonlinear

system of conservation laws.

2.2 Nonlinear Energy Analysis

Before presenting the nonlinear energy result, we prove a general lemma and

consequential corollaries concerning entropy function/flux jump identities at

space-time slab interfaces. Note that throughout this section, we utilize the

stare-space parameterization

_(0) - v(__) + 0 [v]:_+

(similarly across time slab interfaces) for use in state-space path integrations

and the interface averaging operator

v(__) + v(_+)
<<v>):+-- 2

Lemma 2.2. Interface Jump Identities. Let Z(u), Z(v) : IRm _-_ IR be

twice differentiable functions of their argument satisfying the duality relation-

ship

Z(u) + Z(v) = Z,,, v . (2.9)

The following jump identities hold across interfaces

/o[z]i: - [z.]i: v(x.) + (1 - O)[vl_+_• z .... (_(0))[vIi +_dO = 0 (2.10a)

/o'[Z]; +_- [Z,,]_: v(x_) - 0 [v]_ +. Z .... (_(0)) [v]_ +_dO = 0 . (2.10b)

Proof. Recall the following forms of Taylor series with integral remainder

[Zl:- - z..(___ [vl:_+ + 0 Iv]:_+.z .... (_(0)/[vl;: dO= 0 (2.1_a/

fzF+ _ Z,(x_) [v]:_- - (1 - 0) [v]:+ • Z,, _ (_(0)) [v]:* dO = 0 (2.11b)t_Jz_ ' '
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and the jump form of (2.9)

r_ .__"-'-,_._z_+_x_= <<z.,,>>;2[_];_. + <<v>);2[z.,,]_+_ (2._.2)

Combining 2.11a). 2.lib) and (2.12) yMds

[Z]I;*_-((v };- _ _- 1 /o _- [...... +2 (1-20) [v]:+_.Z .... (_(0)) [v]:- dO = 0. (2.13)

Finally. algebraically manipulating this form together with the mean-value
identity

/0':_ _÷ z_.(_(o))[v]: +_dO (2.14)

produces the stated lemma. []

Corollary 2.3. Temporal Space-Time Slab Interface Identity. Let t±

denote a temporal space-time .slab interface. The following entropy function
jump identity holds across time slab interfaces

where

it[ [v]l_- i:.-io.n - 2 (1 - 0) [v]¢,: • .40(g(0))[v]', +_dOdx >_ 0 . (2.16)

Proof. Set Z = U. Z = U with U.,_ = u r and b/,,.,, = -4o in Lemma 2.2 and

replace x± with t± in (2.10a), see [10] for an alternative form. []

Corollary 2.4. Spatial Space-Time Slab Interface Identity. Let x+

denote a .spatial element interface. The following entropy flux jump identity

holds across spatial element interfaces

[F'];:-((vr));-+[J' J_- 2Jo (1-20)[vl;+_..21,(_(o))[v]; + dO=O . (2.17)

Proof. Set Z = F'. Z = .T i. i = 1. d with 5ci = (fi)T and _-i = -4i

in (2.13) of Lemma 2.2. rn

Note that in actual numerical calculations, it is desirable to use the variational

form given by (2.3) since integration by parts has been used to insure exact

discrete conservation even with inexact numerical quadrature of the various

integrals. For analysis purposes, however, it is desirable to use the following

equivalent non-integrated-by°parts formulation:

Find v h E b"h such that for all w h E F h

B(v h. w h )GAL "4- B(v h, "wh)Ls -t- B(v h , wh)Bc ---- 0 (2.18)
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B(V.W)GAL = / /2w" (u.t + fi (V)) dxdt..z,

r ,t'+4- w(t+).LUlto dx
?

/;zf'+ _ [w]::* . h"(v(z_ ), v(x_ ): n) dx dt

f fr l(f(g;n)-f(v:n)-h(i(v'o:n)) dxdtB(v. w)Bc = . w . -_

where h d denotes the flux dissipation term incorporated into the total nu-

merical flux.

Theorem 2.5. Global Entropy Norm Stability (Nonlinear Hyper-

bolic System). The variational formulation (2.3) for nonlinear systems of

conservation laws with convex entropy extension and symmetric mean-value

flux dissipation

/o1t , IA(_(O); n)l.4 ° dOhsxzv(v_.v+ nl = IAIsxtv [v]_: IAlsMv -

is entropy norm ,stable (modulo data (7) with the following 91obal balance:

III [v]',} IIIio,_ -'- 2ll.iov., 4- A,v _, e +V'ervl_+_e_ ' . IlT.ax/- z.__,t Jz-'bAI.exl"
n=O eEL"

.\'--1 N-1

") " -- -- n_O G1q ~

with

and

foI.J.(n)l = 2(1-0) (fl+(_(O);n)Ao- .-1-(_(1- O);n)Ao) dO

( /0 )c7-(o,,) = f,.f_ F(O;-)- o o..4(_(o);n) Odo dx,_t .

i IN-1Tn
Proof. Construct the energy balance for the interval [t°_,tN] = '-'_=0-

by setting w = v and evaluating the various integrals. Consider the time

derivative integral
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and combine with the jump integral across time slabs. From Corollary 2.3

vru,dtdx - vr(t'[)[u]tt*n dx = dx + _]]1 [V]in+ Illio.O l

When summed over all time slabs, the first term on the right-hand-side of

this equation vanishes except for initial and final time slab contributions.

Next, consider the spatial operator term and apply the divergence theorem

= ,P ,Xi _ ,x,

where F(v: n) = n, Fi(v). From Corollary 2.4 and the definition of [_[, it
follows that

/,/o , - r(f.._xdt f _ ((_));+_.[i(n)]:_++
J lneE E de

1/rvl,*+ _2_ += _ _'_ _=-,lal,_,l°

[v]:* ' hSM v dxdt

Ji Jrf"fF(v; n)dzdt.
eE£

In summary, collecting terms we have

_. ") + -_B(V,V)GAL [U]ii +' dx + tl][V]in+ 11150.r_+ Z 2([v]x-)l.A[,e×ln
eE£

- f°frF(V;n) d=dt -

The least-squares integral produces a pure quadratic form without modifica-
tion

B(v, v)Ls = tl.:10v._+ Aiv,xi H_',_×l- •

Finally, consider the boundary condition terms and apply Corollary 2.4

Io, ,oo),o
1

-TO. (f(O;n) - f(v;n)) - _v. IA(n)ISMV(O - v)) dxdt

i'= F(0; n) - F(v; n) - 0 9" ,4(V(O)) 0 dO

I A- (n) O) dx dt .+_ 1.4(,,)1v- ..
Combining the above results', summing over time slabs, and multiplication

by two yields an entropy norm balance equation which bounds the global

entropy norm of the system at the final time T in terms of the initial data

and boundary data 0- []
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Remark 2.6. Note that when the .'[i matrices are _ssumed constant, fi =

.4, v and F' = ½v..-l,v so that the additional term G_c(O.v;n) vanishes

identically and a one-to-one corresponden(:e of terms between theorem 2.1

and theorem 2.5 is achieved.

2.3 A Simplified DG Method in Symmetric Form

DG Flux Formulas. Simplification of the discontinuous Galerkin method fol-

lows by choosing the discrete svmmetrie mean-value flux function proposed

earlier, i.e.

1

hDsxIv(v-. ,+:n) = 7_ (f(v_;n) + f(v,; n))-_ _ Wql.2t(g(Oq)); n)lAo [v];*
q=l

with 1.4] i, = /)l.li/)r. _(0) = v(x_) + O[v]2+_. By using sufficient order

numerical quadrature and subdivision of the state-space path integration
d

at points of non-differentiahility, the hDSMV flUX can be made arbitrarily

close to h 't for which nonlinear stability in the DG method follows from
SMV

the analysis of Sect. 2.2. Suppose that elements of [.-[(_(0q)); n)l& remain

bounded for 0 E [0.1] independent of N. Using N point Gaussian quadrature

!! _ _ h d i, O([v] _'_'+L)hDSMV SM'v 2 ---

Next. we consider single-point quadrature formulas.

Theorem 2.7. Discrete Symmetric Mean-Value Flux. Let v. be a state

.such that

Iv];_- • I.-i-(v.: rt) I [v]_ +_ = sup [v]_ +_ -I.-i(_(0);n)l.ao [v];+_
o<0<l

The variational/or-rnulation (2.3) with numerical flux/unction

1 1 i.__(v.); n)l,4o [v]:_+
hDsMv.(v-,v+:n) = _ (/'(v_;n)+ /(v+:n))-

(2.19)

is energy bounded in the sense of Theorem 2.5.

Proof. It is sufficient to show that the given flux dissipation

hosMv.d = I.-i(v.', _)l,ao [v]_+_

exceeds the symmetric mean-value value flux dissipation. This is reflected by

the algebraic condition

_ hDSMV.•hs,,,v < [v];_+ '
From the symmetric mean-value flux definition

/o'[_1;:. hs.,,v"= _rvl_+__- I.-i(_(0); n)14,, dO _fvV+_._

<_ sup [v]; +- -I.-I(g(O); n)l.i,, [v]; +-
0<0<1
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d
__ IV] x+ . hDSMV •

t Jx_

This establishes nonlinear stability" of the DG method using the simplified

flux function, gl

Remark :2.8. Unfortunately, the state v, is not generally" known in closed

form. Cockburn and Shu [4] have shown impressive results using tile simpler

Lax-Friedrichs flux. It is straightforward to derive a corresponding ':s)'mmet-

tic Lax-Friedrichs" numerical flux function

1 1 k
hSLF(V-.v+:n = _(/(v_:n)+f(v+;n))-- _ m_×--lo(V.) [v]_ +

with A,,,,_× = suPo<e< 1 (maxl<i<,,_ (,lii(F(O)))). Nonlinear entropy norm sta-

bility follows starting from Theorem 2.7

r _** a [vi_- I.-i(v.-n)l% [v]_",vx - • hsM v <_ • ,

= [vl;-_ '/_(v,; n)l.l(v.; n)l Rr(v.;n) [v];_+

< sup ( max (,l,i(-F(O)))_ [vl _+- R(v.'n) fflr(v.'n)[v]: +-
-- O<_)<i\l<i<m / L ix- _

---- ,_max [_];:" d0(u.;'D.) [_]::

Finally. for systems such as the Euler equations of gas dynamics that exhibit

the property °'=u ZiZ.,ZkZl > 0, Izl # 0, we have

. 27 ~ .r + - -- ,r +
[vi¢ _- ..40(v.: n) Iv];- <__max([v]¢_ .Ao(v(O); n) [v],_, [v]; S .,io(F(1); n) [v]_*+ )

thereby avoiding the need for calculating v. altogether, see [1] for details.

DG Jacobian Derivatives. Using the discrete mean-value fluxes, it becomes

straightforward to compute Jacobian derivatives of various terms. For exam-

ple. to compute derivatives of l.-ilAo with respect to a vector w, chain-rule

differentiation is used

Ol-:l(n)lAo Oil(n) ,.l(n)lRT(n)+[_(n) [_r(n)+[_(n)l'l(n)l Ow
Ow Ow

Note that a high degree of computational efficiency can be achieved in the

calculation of these .Jacobian terms by exploiting the transpose symmetry of,

intermediate products.

2.4 Simplified Least-Squares Stabilization in Symmetric Form

Consider an isoparametric element mapping _ _+ x from a unit element space

to a physical space x. In the papers by Hughes and Mallet [7] and Shakib

[10]. they proposed the following form for r appearing in (2.3) on a mapped

element

rp --iBIp..i o, I/)lv..io = IB'I p .J.o, B i = X_,. A¢. (2.20)
i=0 j=O
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Equation i2.20) is of the same form given earlier in (1.15). In standard im-

plementations of least-squares stabilization, p = 2 is used. In light of tile

Eigenvector Scaling Theorem 1.1. it is useful to revisit the derivation of r

with p = 1 Let /)* = B *.t0, from (1.16) it follows that

r, = ibl,.li.. = lV4°t-io + _ Iv,_'l .O(n')I.l(n')i/_r:n')
i=1

using the entropy scaled eigenvectors [_(n i) of/_i. This represents a substan-

tim simplifi_ ation of the r matrix calculation.

3 Concluding Remarks

Simplified forms of the DG. DGLS, and GLS schemes have been presented

and analyzed for first-order systems of conservation laws with convex entropy

extension. Numerical examples are given in [1] using linear, quadratic, and

cubic element approximation.
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